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Summary 

Statistical analysis of trace organics and other pollutants that occur rarely in ‘clean’ ground- 
water poses difficult problems for conventional parametric statistical tests. The frequent occur- 
rence of ‘less than’ values, values above the detection limit but below the quantification limit, 
many zeros, and unidentified pollutants make the use of statistics that require normal distribution 
or equal variances impractical. A method based upon the Poisson distribution that results in exact 
binomial probabilities for hypothesis testing is proposed. This method allows comparison of up- 
gradient wells with down gradient wells or preoperational data with operational data for monitor- 
ing the performance of hazardous waste disposal sites. A numerical example, operating characteristic 
curves, and calculating algorithms are provided. 

Introduction 

Conventional approaches to statistical problems in groundwater monitor- 
ing, e.g., t-tests and analysis of variance, require normal distributions in the 
underlying variables. Although some non-normality can be tolerated under 
certain conditions, conventional tests fail badly when the distributions are 
severely truncated. Truncation occurs when data are cut off at an arbitrary 
level, as by a detection limit, or when a large proportion of values are zeros or 
‘not detected’. Often ‘real’ values, values above the detection limit, are but 
seldom encountered; that is, such values are rare events. 

Rare events, as Mosteller and Rourke pointed out, have a known distribu- 
tion. They wrote, “The distributions of the numbers of occurrences of events 
in fixed periods of time or space, or of counts of rare events, such as accidents, 
often conform approximately to a distribution called the Poisson” [ 1 ] . Under 
certain conditions occurrences of values of pollutants reliably above detection 
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limits in groundwater monitoring at hazardous waste disposal sites follow the 
Poisson distribution. 

Two types of testing are typical for monitoring groundwater near hazardous 
waste disposal sites. In one, monitoring depends upon comparison of water 
from wells upgradient of the waste disposal site with water from wells down- 
gradient of the site. In the other, used where no clear gradient exists, water 
sampled from wells before a site has become operational (no on-site disposal 
has occurred) is compared with water sampled after disposal has begun. The 
statistical method described below is intended to be of use in both situations. 

A chromatographic scan of water samples is often used to detect, identify, 
and if possible, quantify pollutants in groundwater. Typically, the chromato- 
graphic record is examined to determine whether any of a list of ‘priority’ pol- 
lutants is present. The chromatograhic record is compared with a library of 
known pollutants to determine if the record matches any ‘signature’ in the 
library. Usually, most of the ‘priority’ pollutants are not detected. Sometimes 
the scan indicates the presence of a pollutant but the chromatographic record 
does not match any known signature. Such a pollutant remains unidentified. 
Occasionally a record may indicate the presence of a pollutant at a value too 
low to be quantified. Other pollutants, identified or unidentified, may be pres- 
ent at a concentration sufficient for quantification. However, when the sam- 
ples are from upgradient wells or from a preoperational time period there are 
usually few quantifiable values. 

For pollutants that are unidentified it is impossible to test whether their 
concentrations have changed between upgradient and downgradient or be- 
tween preoperational and operational time periods. Even for identified pollu- 
tants the occurrence of ‘less than’ values and markedly non-normal 
distributions make conventional parametric testing of means or magnitudes of 
concentrations inadvisable or impossible. We are proposing a method based 
upon ‘events’ where an event is defined as the occurrence of a pollutant above 
a preselected concentration. (See below for the treatment of values that are 
far above the preselected level. ) The concentration selected may vary from 
pollutant to pollutant. In the proposed method one counts the number of ‘events’ 
and tests whether these events occur more often during the operational time 
period than they did preoperationally, or whether such events are more fre- 
quent downgradient than they are upgradient. If the events follow the Poisson 
distribution the crucial question is whether the parameter of the Poisson dis- 
tribution has changed. 

In its most general form, the Poisson distribution is applicable as a model 
for any counting process that comprises independent, rare events. Although 
the Poisson model is most often used for stochastic processes, it is not re- 
stricted to events in time. One form of the model, the “non-homogeneous Pois- 
son process” [ 21 can be applied to the detection of groundwater constituents 
in a chromatographic scan. 
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Let Ei, i=1,2,... be a set of dichotomous events and Let P(E,=l) =r,+. The 
0; need not be assumed to be identical (hence the term “non-homogeneous”). 
In this application Ei registers the detection of a given constituent in a single 
sample of water. Let X=EI+E2+ . . . . the total number of “detections” in a 
sample. Let A=Q+u~+..., the expected number of “detections” in a given 
sample. 

The number of detections, X, will be distributed according to the Poisson 
probability distribution, 

P(X=k) =e-‘;lk/k! 

if the following conditions are met: 
1. The component events, Ei, are mutually independent. 
2. The probability of occurrence of each event, ui, is arbitrarily small. 
3. The total expected number of events u1 + u,+ . . . is finite. 

Condition 1 implies that the detection of one constituent in a well sample is 
unrelated to the detection of any other constituent. This assumption is cer- 
tainly plausible if all detections result from random laboratory or measure- 
ment error, or if there is no necessary connection between the detection of one 
pollutant and the detection of some other one. 

Conditions 2 and 3 imply that the events are rare. It is assumed that the 
detection of any given constituent is an unlikely event. In upgradient samples 
and in preoperational samples this assumption is well-founded. In any event, 
pollutants routinely found at a given site can be excluded from the analysis 
thus insuring that the conditions will be met. (Excluded pollutants can be 
statistically analyzed by conventional means. ) 

Two properties of the Poisson distribution yield a simple test statistic. If X1, 
X 2, . . . . X, are independent Poisson variables having rate parameters &, &, . . . . 
A, then the sum Y = (X1 +X, + . . . +X, is Poisson distributed with rate param- 
eter il=& +A, + . . . +A,). Thus, the sum of all ‘events’ from n upgradient well 
samples ( Y1 ) is a Poisson variable. If all samples are assumed to be identically 
distributed with parameter iz, the overall rate is simply rd. Similarly, under the 
null hypothesis, the total ‘events’ in a sample of m downgradient well samples 
( Yz) is a Poisson variate with parameter nA. 

A second property of the Poisson distribution can be applied to the totals Y1 
and Y2. If X, and X, are independent Poisson variables with parameters ;1, and 
&, then the conditional distribution of X1, given X, +X,, is binomal with pa- 
rameters P=;1,/(;2,+&) and N=X1+X2 [3] (see Appendix A). Under the 
null hypothesis that upgradient and downgradient samples come from the same 
population, P reduces to a simple function of the number of up and downgra- 
dient samples: P= n/ ( n + m) . A simple example based upon data from a “clean” 
site in the Northeast may help clarify the application of this property. 

Table 1 shows the data upon which the following analyses are based. Two 
downgradient wells were not installed until the third quarter of 1986. There 
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TABLE 1 

Number of times any compound was reported above Method Detection Limit (MDL) 

Sampling quarter Up gradient wells Down gradient wells 

Ul u2 u3 D2 D3 D4 D5 

3rd 1985 1 3 1 0 1 1 NI NI 
4th 1985 0 0 0 0 0 0 NI NI 
1st 1986 2 0 0 0 0 0 NI NI 
2nd 1986 1 0 1 1 1 1 NI NI 
3rd 1986 1 1 0 0 0 0 0 1 
4th 1986 1 1 0 0 1 1 1 1 

NI = Not installed at this time. 

are therefore 40 reports of samples (wells x quarters). A total of 23 events were 
reported. One should expect that because 18 of the 40 samples (45% ) were 
from upgradient wells that 0.45 x 23 = 10.35 events would have occurred in up- 
gradient samples and 0.55 x 23 = 12.65 of the 23 events would have occurred in 
downgradient samples. In fact, there were 13 upgradient hits and 10 events in 
downgradient samples. The probability of observing 13 or fewer events when 
one would expect 10.35, or 10 or more events when one would expect 12.65 is 
0.9063 and can be obtained directly and exactly from a table of the binomial 
distribution with P=O.45, &= (1 -P) =0.55, and N=23. Table 2 shows the 
calculations required. Appendix B contains a Basic language program that will 
calculate the required probabilities for any values of P, Q, and N. 

Alternatively, when all expected values are sufficiently large, e.g., five or 
more, the same probability can be easily approximated from the chi-square 
distribution (corrected for continuity) by calculating x2=C( 1 O-E I+ 
0.5) ‘/E where 0 is the observed number of events in a time period and E is the 
expected number. In the present example this amounts to 
( 113-10.351 +0.5)2/10.35+ ( 110-12.651 +0.5)'/12.65=1.7431. Reference 
to a table of chi-square with one degree of freedom shows that values of x2 that 
large or larger will occur approximately 90% of the time by chance when there 
is no difference between the upgradient and downgradient populations. One 
may also use the fact that when x2 has one degree of freedom x2 =.Z2 where 2 
is a standard normal deviate. Thus, Z= (1.7431)“.5=1.3203. Reference to a 
table of the standard normal distribution shows the probability of obtaining 
10 or more downgradient hits when 12.65 are expected by chance is 0.9066, in 
good agreement with the exact binomial probability of 0.9063 calculated above. 
These data, therefore, provide no evidence of an adverse environmental impact. 

An important assumption of the method described herein is that the events 
are approximately Poisson distributed. The Kolmogorov-Smirnov D-Max sta- 
tistic can be used to test that assumption [ 41. An example of the calculation 
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TABLE 2 

Calculations for the binomial distribution for 23 events: 13 upgradient and 10 downgradient 

Nl N2 Factorials coeff prod ind prob cum 2 N2 

23 0 1 1 1.05654x lo-* 0.000000 1.000000 
22 1 1 23 1.29133x 10-s 0.000000 1.000000 
21 2 2 253 1.57829 x 10-8 0.000004 1.000000 
20 3 6 1771 1.92903 x 10-s 0.000034 0.999996 
19 4 24 8855 2.3577 x lo--’ 0.000209 0.999962 
18 5 120 33649 2.88163 X lo--* 0.000970 0.999753 
17 6 720 100947 3.522 x lo-’ 0.003555 0.998783 
16 7 5040 245157 4.30466 X lo-* 0.010553 0.995228 
15 8 40320 490314 5.26125x lo-’ 0.025797 0.984675 
14 9 362880 817190 6.43042 x lo-’ 0.052549 0.958878 
13 10 3628800 1144066 7.8594 x 10-8 0.0899 17 0.906329 
12 11 39916800 1352078 9.60594 x 10-s 0.129880 0.816412 
11 12 479001600 1352078 1.17406x 1O-7 0.158742 0.686533 
10 13 6227020800 1144066 1.43496x 1O-7 0.164169 0.527791 
9 14 87178291200 817190 1.75384x 10-7 0.143322 0.363622 
8 15 1307674368000 490314 2.14358x 1O-7 0.105103 0.220300 
7 16 20922789888000 245157 2.61994x lo-? 0.064230 0.115197 
6 17 355687428096000 100947 3.20214x 1O-7 0.032325 0.050967 
5 18 6402373705728000 33649 3.91373 x 10-7 0.013169 0.018642 
4 19 121645100408830000 8855 4.78345x 10-r 0.004236 0.005473 
3 20 2432902008176600000 1771 5.84644x 1O-7 0.001035 0.001237 
2 21 51090942171709000000 253 7.14565x 1O-7 0.000181 0.000202 
1 22 1124000727777600000000 23 8.73357x lo-’ 0.000020 0.000021 
0 23 25852016738885000000000 1 1.06744x 1O-6 0.000001 0.000001 

Nl =number of upgradient events; N2=number of downgradient events, factorials= N2!; 
coeff = binomial coefficient = 23!/ (Nl! x N2!) ; prod =pN’ x fl”” = 0.45N’ x 0.55N2; ind prob = 
coeff Xprod, and cum > N2 is the sum of ind prob from N2 to the total number of events. 

of D-Max is given in Appendix C. Because there were 23 events in 40 samples 
we estimated ;1 to be 23/40= 0.575. The results of the calculations show the fit 
to the Poisson to be excellent. Tables for the interpretation of D-Max may be 
foundinRefs. [4] or [5]. 

The procedure described in this paper is uniformly most powerful, i.e., no 
more powerful test is possible for the data and hypothesis considered above. 
The power of detecting a change in the rate of events depends upon the mag- 
nitude of the change and upon the total number of events. Figures 1 and 2 show 
the operating characteristics of the test when there are 23 of 100 total events 
respectively. In both figures n (the proportion of downgradient samples and, 
thus, the expected proportion of downgradient events under the hypothesis of 
no difference between up and downgradient populations) is set to 0.55. 

The method described above is intended to be of use when detected events 
have an appreciable probability of being chance occurrences, i.e., random events 
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Fig. 2. Operating characteristic curve for binomial: n= 100, II =0.55. 

rather than pollution from a hazardous waste disposal site. Consequently it 
treats all events the same way; each is counted as a “1”. To give appropriate 
weight to large concentrations that might indicate a real problem, it may be 
desirable to establish a concentration level above which a detection per se will 
trigger an appropriate action. A concentration that has a nearly vanishing 
probability of random occurrence should be selected for this purpose. 
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Appendix A 

Let Y1 N Poisson (A,) and Y2 w Poisson (A,). 
Yl and Y2 is 

f( Y,,Y,) = [ (e-‘l&Y1)/Yl!] [ (e-‘2& y2)/Y,!] 

Then the joint distribution of 

If we let n= Y1 + Yz the distribution of n is Poisson 

f(n) = (e-cnl+nn)(dl+~~)“)/n! 

and the conditional distribution of Y1 and Yz given n is 

f(yl,y, ,n) _ He-“% Y1He-A2& y*)l/YJY2! - 
(e-(‘l+az)(,l+,z)n)/n! 

=(~~/Y~~Yz~)~(~~/(~~+~~))Y*l~(~~/(~~+~))yzl 
which is the binomial distribution [ 5 ] . 

Appendix B 

REM this program calculates binomial probabilities 
REM N is the number of downgradient events; n is the total number of events. 
PRINT “enter total number of events” 
INPUT n 
m=n+l 
~~~fact(m),coeff(m),prod(m),prob(m),bum(m),cum(m) 
PRINT “enter the proportion of downgradient reports” 
PRINT “ (equals the number of downgradient reports/total reports ) ” 
INPUT p 
q= 1.00000-p 
fact(O) =l 

FORl=lTOn 
fact(i) =i*fact(i-1) 

NEXT i 
coeff(i) =fact(n)/(fact(i) *fact(n-i)) 
prod(i) = (pt(n-i)) * (qt (i)) 
prob(i) =coeff(i) *prod(i) 

NEXT i 
cum(O) =prob(O) 

FORi=lTOn 
cum(i) =prob(i) +cum(i-1) 

NEXT i 
bum ( 0 ) = 1 .OOOOOO 

FORi=lTOn 
bum(i) =l-cum(i-1) 
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NEXTi 
LPRINT “Cumulative Probabilities of N or More Downgradient events [or” 
LPRINT “Fewer than (n - N ) Upgradient events] when the Probability of an” 
LPRINT “Downgradient event is”; p 
LPRINT 
LPRINT 
LPRINT 
LPRINT “N", “Ind. Prob.“, “Cum. Prob.” 

FORi=OTOn 
LPRINTuSING“#w'; i, 
LPRINT “ ", 
LPRINTUSING“#######";~~~~( i), 
LPRINT “ ", 
LPRINTUSING"#######";~~~( i) 

NEXT i 
END 

Appendix C 

Kolmogorov-Smirnov Worksheet 

Events: 23; samples: 40; and k 0.575. 

Poisson probabilities = exp ( -A) * (A**n) /n! 

n Factorials probability exp cum prob cum x obs n obs cum prob diff 

0 1 0.5627 0.5627 22.5082 20 0.5000 0.0627 
1 1 0.3236 0.8863 35.4504 18 0.9500 0.0637 
2 2 0.0930 0.9793 39.1713 1 0.9750 0.0043 
3 6 0.0207 1.0000 40.0000 1 1 .oooo 0.0000 

Table of D-Max critical values 

p value 0.2 0.15 0.1 0.05 0.01 
crit diff 0.1692 0.1802 0.1929 0.2150 0.2577 

If maximum of diff excedes crit diff then reject Poisson 


